LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2007

AB 24

MT 3803/MT 3800 - TOPOLOGY

Answer all questions. All questions carry equal marks.

01.(a)(i) Let X be a metric space with metric d. Show that d₁ defined by $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$ is also a metric on X.

(OR)

- (ii) Let X be a metric space. Show that any union of open sets in X is open and any finite intersection of open sets in X is open. (5)
- (b)(i) Let X be a metric space, and let Y be a subspace of X. Prove that Y is complete iff Y is closed.
 - (ii) State and prove Cantor's Intersection Theorem.
 - (iii) State and prove Baire's Theorem. (6+5+4)
 - (iv) Let X be a metric space. Prove that a subset G of X is open \Leftrightarrow it is a union of open spheres.
 - (v) Let $f: X \to Y$ be a mapping of one topological space into another. Show that f is continuous $\Leftrightarrow f^{-1}(F)$ is closed in X whenever F is closed is $Y \Leftrightarrow f(\overline{A}) \subseteq \overline{f(A)} \ \forall \ A \subseteq X$. (6+9)
- 02.(a)(i) Prove that every separable metric space is second countable.

(OR)

- (ii) If f and g are continuous real or complex functions defined on a topological space X, then show that f + g and αf are also continuous. (5)
- (b)(iii)Show that any continuous image of a compact space is compact.
 - (iv)Prove that any closed subspace of a compact space is compact.
 - (v) Give an example to show that a compact subspace of a compact sphere need not be closed. (6+6+3)

(OR)

(i) Let C(X, R) be the set of all bounded continuous real function defined on a topological space X. Show that (i) C(X, R) is a real Banach space with respect to positive condition and multiplication and the norm defined by

commutative real algebra with identity in which $ fg \le f g $ and $ f = 1$. (10 + 5)	•
3.(a) (i) Prove that the product of any non-empty class of compact spaces is compact (OR) (ii) Show that every sequentially compact metric space is compact. (5)	t.
(b) (i) Show that a metric space is sequentially compact	
(ii) Prove that every compact metric space has the Bolzano Weierstrass property (OR) $(10+5)$ (iii) Prove that a metric space is compact \Leftrightarrow it is complete and totally bounded.	
(iv) Let X be a compact metric space. If a closed subspace of $C(X, R)$ or $C(X, G)$ is compact, show that it is bounded and equicontinuous. (7 + 8)	C)
4.(a)(i) Prove that every compact Hausdorff space is normal. (OR)	
 (ii) Let X be a T₁-space. Show that X is normal ⇔ each neighbourhood of a closed set F contains the closure of some neighbourhood of F. (5) 	
(b)(iii)Show that every subspace of a Hausdorff space is also Hausdorff.	
(iv) Prove that every compact subspace of a Hausdorff space is closed.	
(v) Show that a one–to–one continuous mapping of a compact space onto a Hausdorff space is a homemorphism. $(6+4+5)$ (OR)	
(i) State and prove the Uryshon Imbedding Theorem.	
5.(a) (i) Prove that any continuous image of a connected space to connected. (OR)	
(ii) Let X be a topological space and A be a connected subspace of X. (5) If B is a subspace of X such that $A \subseteq B \subseteq \overline{A}$, show that B is connected.	
(b) (i) Show that a subspace of a real line R is connected \Leftrightarrow it is an interval.	
(ii) Prove that the product of any non–empty class of connected spaces is connected. (9 + 6)	
(iii) State and prove the Weierstrass Approximation Theorem. (15)	
X = X = X	

 $||f|| = \sup |f(x)|;$ (ii) If multiplication is defined pointwise C(X, R) is a